

Once the digital representation of design parts is complete, architects prepare their design for construction. In other words, the design process has always started by creating the digital representation of a project and then attempting to replicate it in real life. Real-world projects are similar to what architects imagined from the beginning.

From the early traditional drawings to the three-dimensional visualizations and virtual environments, all have enabled architects to demonstrate design outputs relatively early in the process. As the practical experiment is successfully completed, we conclude that such an endeavour can actually be achieved at building level offering several economic, environmental and social benefits.Īrchitects have long relied on visualization tools to develop their concepts for specific design problems. A practical application is implemented for a two-storey ‘smart’ building with sensor systems installed in its assets and in the surrounding landscape area. In this paper, we propose a methodology for providing the DT of a building by crossing from the BIM static world to the dynamic cyber-world of DTs. DTs in the built environment are still in nascent stages and thus a more in-depth investigation is required to explore and establish the best practices and technologies to serve this evolution. Although BIM lacks semantic completeness in areas beyond the scope of building modelling such as control systems, cadastral systems, networking of sensors, meteorological networks, etc., the DTs aim to achieve the synchronization of big data from various sources and simulate the real world into a virtual platform for the seamless management and control of the construction process, facility management, environmental monitoring, disaster management and disaster prevention, and other life cycle processes within the built environment. The ability to connect and monitor data from sensor networks remotely in real time as well as the simulation and optimization of engineering systems, have led to the emergence of the Digital Twin (DT) concept of the structured environment. The recent emergence of the Internet of Things (IoT), the latest technological innovations and the widespread use and embrace of Building Information Models (BIMs) offer several new ideas and decision-making capabilities throughout the life cycle of the built environment. Também foi determinado que o uso de parâmetros muito sensíveis para escalar o sistema faz com que mais nodos que o necessário sejam instanciados e recursos desperdiçados. Os resultados da implantação desse componente ajudaram a determinar margens de perda e latências no envio de mensagens críticas, utilizando diferentes estratégias para escalar o cluster sob cargas de trabalho representativas de aplicações de Gêmeos Digitais. Este componente foi desenvolvido com o objetivo de monitorar a saúde de um cluster de brokers e ajustar a composição do cluster ao fluxo de mensagens. Para isso é usado o modo cluster nativo de implementações de brokers MQTT, adicionando um componente à arquitetura do sistema ao qual chamamos de “Cluster Manager”. Este trabalho reconhece as limitações desse protocolo quando utilizado condições de tráfego intenso e explora alternativas para aumentar o fluxo de dados minimizando a perda de mensagens e o uso de recursos. Para realizar a aquisição de dados nesse tipo de sistema, utiliza-se comumente protocolos como MQTT.

No geral, são sistemas de grande escala com intenso fluxo de dados entre as suas apartes (física e digital). Gêmeo Digital é o nome dado a um tipo de sistema que possui total integração entre uma parte física e uma parte digital atualizada em tempo real.
